28
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

From monomeric to polymeric ferroelectric liquid crystals A comparative study of ferroelectric properties

, , , , &
Pages 811-818 | Received 12 Sep 1994, Accepted 29 Oct 1994, Published online: 24 Sep 2006
 

Abstract

Two new ferroelectric oligosiloxanes, a cyclic tetramer and a twin, have been synthesized. By a comparative study with their corresponding monomer and side chain polysiloxanes, the influence of oligo- and polymerization on the liquid crystalline and ferroelectric properties have been investigated. Polymerization leads to a stabilization of LC phases through increase of the clearing temperatures and suppression of crystallization. Oligomerization also leads to mesophase broadening, but, due to the low degree of polymerization, the effect is inferior to the linear polysiloxanes. The low viscosity of the oligosiloxanes ensures response times in the microsecond region, thus being comparable with their monomer and conventional LMWFLCs. It is found that polymerization increases the spontaneous polarization P s. This is attributed to the density increase after polymerization, enhancing the inter-mesogenic interactions. The collective and local dynamics of the OFLCs are influenced differently with respect to their molecular structures. Each oligomer is already a good model for its corresponding polymer concerning the soft mode dynamics. For the local β-relaxation a similar temperature dependence of the relaxation times τ for the cyclic tetramer and for the side chain polysiloxanes is observed. The long axial rotation of the twin, having a very efficient decoupling, is significantly faster, thus resembling the monomer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.