45
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Molecular modelling of liquid crystal systems: An internal coordinate Monte Carlo approach

Pages 437-447 | Received 09 Aug 1995, Accepted 12 Apr 1996, Published online: 24 Sep 2006
 

Abstract

A Monte Carlo scheme is presented which is designed to provide a convenient mechanism to model accurately the internal molecular structure of liquid crystalline molecules. The technique stores atomic positions in terms of bond lengths, bond angles and dihedral angles within a Z-matrix, and the Monte Carlo scheme involves generating trial configurations from changes to the Z-matrix using the MM2 molecular mechanics potential to describe energy changes between different molecular conformations. The technique is applied to the liquid crystal molecule 4-n-pentyl-4′-cyanobiphenyl (5CB), and results are presented for the conformational populations and dihedral angle distributions of 5CB in the gas phase at 300 K. The effect of a nematic mean field on the distribution of molecular conformations is also examined via the addition of a conformation-dependent potential of mean torque to the internal energy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.