192
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

On the flexoelectric effect in nematics

Pages 503-510 | Published online: 11 Nov 2010
 

Abstract

Flexoelectricity is a general and fundamental phenomenon in liquid crystals. It describes the linear coupling between an applied electric field and gradients in the director field. Whereas flexoelectricity has for decades been regarded as only of academic interest, we think it is time to point out its considerable application potential, for instance in the case of the flexoelectrooptic effect, and to urge a revival of interest in the subject. As a result of long-time neglect, published data on flexoelectric coefficients are scarce and inconsistent, even with regard to the sign of the reported effect. In this paper we critically review the possible definitions of flexocoefficients in order to propose an international standard. We point out that the absence of such a standard obstructs the understanding of the physical basis, microscopically as well as macroscopically, of the effect, and leads to the introduction of nonsensical concepts like ‘flexoelectric anisotropy’. Based on the only natural convention, we finally propose a simple method for measuring sign and magnitude of the effective flexoelectric coefficient which is the control parameter in electro-optic effects.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.