27
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Experimental investigation of the compressible continuum theory of a homeotropically aligned ferroelectric liquid crystal

Pages 727-733 | Received 01 Sep 2001, Published online: 06 Aug 2010
 

Abstract

The optical tensor configuration in a homeotropically aligned ferroelectric liquid crystal (FLC), SCE13 cell, is investigated by means of optical excitation of half leaky guided modes. A thin slab of FLC is confined between a high index pyramid and a low index substrate whose indices bound those of the liquid crystal. In this geometry there exists a small angle range over which a series of sharp resonant modes may propagate in the liquid crystal. Detecting the angular dependent reflectivity for plane polarized radiation and subsequently fitting the data by iteratively modelling from multilayer Fresnel theory, a full characterization of the tilt and twist profile throughout the cell is achieved. The temperature dependence of the tilt of the principal director, which is related to the smectic cone angle, and of the optical permittivity, as well as the pitch have been obtained. The tilt director profile across the cell is interpreted using a compressible continuum theory for SmC* liquid crystals which includes the possibility of variable cone angle and layer spacing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.