108
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Conformational energy landscapes of liquid crystal molecules

Pages 477-482 | Received 01 Sep 2001, Published online: 06 Aug 2010
 

Abstract

The conformational energy landscape of the prototypical nematic liquid crystal 4-pentyl-4cyanobiphenyl (5CB) is studied using first principles computer modelling. It is found that the most favourable conformation occurs when the two constituent phenyl rings are inclined at an angle of 31 with respect to each other. Also, the orientation of the alkyl chain is found to have an important influence on the ring-ring torsional potential. We fit the energy surface of these coupled torsions to yield an accurate intramolecular potential for use in empirical modelling. To test the strength of the coupling between the alkyl tail and the phenyl rings and the cyano group, we also calculate potentials for the relative orientation of the phenyl rings in biphenyl and cyanobiphenyl (0CB). Our calculations are performed using density functional theory using pseudo-potentials and the generalized gradient approximation to exchange and correlation. The molecular electronic wavefunction is expanded in terms of a plane wave basis set. We compare our results with recent NMR and Gaussian-based quantum chemistry calculations where available.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.