306
Views
24
CrossRef citations to date
0
Altmetric
Articles

Comparative analysis of light-stimulated motility responses in three diatom species

, , , , , , , , , , , , , , & show all
Pages 213-225 | Received 04 Feb 2015, Accepted 07 Apr 2015, Published online: 09 Jul 2015
 

Abstract

Diatoms have long been known to be photosensitive, altering the direction of their movement in response to changes in ambient light conditions detected at the tips of the cells. In order to better understand the light conditions responsible for triggering positive photophobic (out-of-light) and negative photophobic (into-light) responses of diatoms, cells from three species of diatoms, Craticula cuspidata (Kützing) D.G. Mann, Stauroneis phoenicenteron (Nitzsch) Ehrenberg, and Pinnularia viridis (Nitzsch) Ehrenberg, were irradiated at their leading or trailing ends during cell movement. The response times for direction changes when cells were irradiated at various irradiance levels and wavelengths were measured to determine the quality of light responsible for eliciting cell direction changes in each of the three species. All three species displayed strong out-of-light responses at the highest irradiances measured. Craticula cuspidata cells displayed negative photophobic sensitivity (into-light) responses in moderate level blue light, while S. phoenicenteron cells showed into-light responses with low-level red light. Pinnularia viridis cells showed less responsiveness to blue and green light than the other two species, and almost no sensitivity to red light. By re-irradiating cells a second time after a previous leading or trailing end irradiation, we observed a 2–3 fold (leading) or 3–8 fold (trailing) motility repression, caused by the initial light exposures, which lasted for approximately 30–60 sec. Irradiating the cells multiple times, upon each direction change, indicated some degree of habituation to irradiation over time. Multiple consecutive irradiations of the trailing end of diatoms resulted in strong repression of any direction change, with cells continuing to move in the same direction for up to 20 min; this repression became reduced as the interval time between trailing-end irradiations increased. These results suggest that diatoms display species-specific physiological responses to light irradiations that may help them to appropriately respond to ambient light conditions, and better organize and succeed within larger algal or multi-species diatom assemblages.

Acknowledgements

We would also like to thank Dr. Marianne McCollum and Eli Spangler for help in obtaining some of the pond samples from which the diatoms were isolated.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors would like to acknowledge the funding of equipment used in this project through a prior NSF grant (IBN-9982897) and through funding of the DePaul College of Science and Health and the DePaul University Research Council.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.