708
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Digital holographic microscopy: a novel tool to study the morphology, physiology and ecology of diatoms

, &
Pages 1-16 | Received 03 Aug 2015, Accepted 16 Nov 2015, Published online: 24 Mar 2016
 

Abstract

Recent advances in optical components, computational hardware and image analysis algorithms have led to the development of a powerful new imaging tool, digital holographic microscopy (DHM). So far, DHM has been predominantly applied in the life sciences and medical research, and here, we evaluate the potential of DHM within a marine context, i.e. for studying the morphology, physiology and ecology of diatoms. Like classical light microscopy, DHM captures light-intensity information from objects, but in addition, it also records the so-called phase information. Because this phase information is recorded in a fully quantitative way, it gives access to a whole new type of image properties, which suitably extend the range of microscopy applications in diatom research. Here, we demonstrate the ability of DHM to provide structural information on internal cell organelles as well as the silica frustules of diatoms. By combining the light intensity and phase information, one also obtains the optical ‘fingerprint’ of a cell, which can be used to discriminate between cells of separate diatom species or to differentiate between living and dead cells (as demonstrated here for two diatom species Navicula sp. and Nitzschia cf. pellucida). Finally, we use chains of Melosira sp. to demonstrate the capacity of DHM to refocus post-acquisition, and combine holograms with fluorescent images, and the ability of DHM to image transparent substances, such as extracellular polymeric substances. Overall, DHM is a promising versatile microscopic technique, allowing diatoms to be investigated in vivo, over time, without the need for staining, and quantitatively in terms of their phase information. Thus, DHM can provide new insights into the structure, as well as the physiology and ecology of diatoms.

Acknowledgements

We are indebted to Michele Grego (Culture Collection Yerseke, Royal Netherlands Institute for Sea Research) for his algal culturing work, as well as Cátia Carreira and Corina Brussaard (Royal Netherlands Institute for Sea Research, Texel) for providing a sample of Nitzschia capitellata. We also thank Erik van Eynde (University of Antwerp, Belgium) and Pieter Vanormelingen (University of Gent, Belgium) for providing samples of diatom frustules. Finally, we thank Ovizio Imaging Systems for providing general support as well as access to the QMod instrument.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.