165
Views
6
CrossRef citations to date
0
Altmetric
Articles

Vertical Ground Reaction Force During a Water-Based Exercise Performed by Elderly Women: Equipment Use Effects

, , , , &
Pages 479-486 | Received 02 Feb 2018, Accepted 14 May 2019, Published online: 11 Jun 2019
 

ABSTRACT

Purpose: The present study aimed to compare the vertical ground reaction force responses during the performance of the stationary running water-based exercise with and without equipment at different cadences by elderly women. Method: Nineteen elderly women (age: 68.6 ± 5.0 years; body mass: 69.0 ± 9.5 kg; height: 154.9 ± 5.6 cm) completed one session consisting of the performance of the water-based stationary running with elbow flexion and extension immersed to the xiphoid process depth. The exercise was performed in three conditions, without equipment, with water-floating and with water-resistance equipment, at three cadences (80 b·min−1, 100 b·min−1 and maximal) in a randomized order. Peak and impulse of vertical ground reaction force were collected during the exercise using an underwater force plate. Repeated measures two-way ANOVA was used (α = 0.05). Results: Peak vertical ground reaction force (p < .001) and impulse (p ≤ 0.002) resulted in lower values for the water-floating use (0.42–0.48 BW and 0.07–0.13 N.s/BW) in comparison to the water-resistance equipment use (0.46–0.60 BW and 0.09–0.16 N.s/BW) and to the non-use of equipment (0.45–0.60 BW and 0.07–0.17 N.s/BW), except for the impulse at the maximal cadence. In addition, peak vertical ground reaction force at 80 b·min−1 (p = .002) and impulse at the maximal cadence (p < .001) showed lower values compared to the other cadences. Conclusion: The use of water-floating equipment minimizes the vertical ground reaction force during the stationary running water-based exercise performed by elderly women regardless of the cadence.

Acknowledgments

The authors gratefully acknowledge all individuals who participated in this research and made this project possible.

Additional information

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico [482899/2013-1].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.