111
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Role of Extracellular Signal-Regulated Kinase in Glutamate-Stimulated Apoptosis of Rat Retinal Ganglion Cells

, , , , &
Pages 233-239 | Received 06 Jan 2006, Accepted 14 May 2006, Published online: 02 Jul 2009
 

Abstract

Purpose: To investigate the involvement of the extracellular signal-regulated kinase (ERK) signaling pathway after intravitrevous injection of glutamate in rat retina. Methods: Three groups of five Sprague-Dawley rats each were studied. Group I was a normal control group, intravitreal saline injections. In Group II, one eye received an intravitreal glutamate injection (375 nmol, dissolved in saline) while the contralateral eye served as control. In Group III, intravitreal PD98059 (100 μ mol, an inhibitor of ERK) injections were administered 1 hr before glutamate injections. Seven days after injections, phosphorylated (activated) ERK in retina was localized by immunohistochemistry and fluorescent double labeling of retinal cryosections. Specific ERK blockade was documented to assess the functional significance of activated ERK. TUNEL staining was performed to assess apoptotic cell death. Results: Expression of phosphorylated ERK in rat retina was observed in the inner nuclear layer, the outer nuclear layer, and the nerve fiber layer after 3 days intravitreous injection of glutamate, increasing significantly after 7 days. Double immunofluorescence labling demonstrated that the increased retinal immunostaining for phospho-ERK was predominantly localized to the retinal Müller cells after 7 days intravitreous injection of glutamate. Moreover, blocking activation of ERK significantly improved the number of TUNEL-positive cells in the eyes receiving intravitreal PD98059 injections compared with the eyes receiving glutamate injections. Conclusions: The ERK pathway is involved in signal transduction in the retina after excessive stimulation by glutamate, which may contribute to the antiapoptotic role in retinal ganglion cell death induced by glutamate.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.