457
Views
44
CrossRef citations to date
0
Altmetric
Research Article

Numerical Study of the Effect of Corneal Layered Structure on Ocular Biomechanics

, , &
Pages 26-35 | Received 01 Jul 2008, Accepted 06 Oct 2008, Published online: 02 Jul 2009
 

Abstract

Purpose: The study aimed to improve the accuracy of corneal numerical simulation by adopting a better representation of the corneal layered structure. The study considered both the shear and tensile behavior of the interface surfaces between stromal lamellae, and assessed the effect of modeling the cornea's three main layers—the epithelium, stroma, and endothelium with their respective material properties. Methods: Twelve human donor corneas were tested to determine the behavior of the stroma under surface shear. Numerical models were then built to consider the stromal inter-lamellar adhesion, which included the shear behavior determined experimentally and the tensile behavior available in the literature. They also adopted the distinctive material properties of the epithelium, stroma, and endothelium. The numerical models simulated corneal behavior under intraocular pressure elevation, concentric anterior pressure, and the conditions under tonometry with the Goldmann applanation tonometer. Results: The stress-strain shear behavior of stromal tissue followed an exponential pattern, with an initial low stiffness increasing gradually under higher stresses. This behavior was adopted in the numerical simulation to set the level of adhesion between stromal layers. Considering that the stromal inter-lamellar adhesion and the distinctive material properties of corneal layers had a significant effect in simulating the response to concentrated anterior pressures, which cause bending of corneal tissue, this was almost unnecessary when predicting the effect of intraocular pressure, which put the cornea under membrane tension. Conclusions: The corneal layered structure affects the results of numerical simulations especially in problems where the cornea is subjected to bending effects.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.