192
Views
14
CrossRef citations to date
0
Altmetric
Original

Mediators of Neovascularization and the Hypoxic Cornea

, , &
Pages 501-514 | Received 08 May 2008, Accepted 23 Mar 2009, Published online: 21 Jul 2009
 

Abstract

The maintenance of corneal avascularity is essential to vision. The mechanisms by which the cornea becomes vascularized in response to inflammation or hypoxic stress are beginning to be elucidated. A detailed understanding of the molecular responses of the cornea to hypoxia is critical for prevention and development of novel treatments for neovascularization in a range of disease states. Here, we have examined the current literature on the major mediators of angiogenesis, which have previously been reported during hypoxia in the cornea in order to better understand the mechanisms by which corneal angiogenesis occurs in circumstances where the available oxygen is reduced. The normal cornea produces angiogenic factors that are regulated by the production of anti-angiogenic molecules. The various cell types of the cornea respond differentially to inflammatory and hypoxic stimuli. An understanding of the factors that may predispose patients to development of corneal blood vessels may provide an opportunity to develop novel prophylactic strategies. The difficulties with extrapolating data from other cell types and animal models to the cornea are also examined.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.