166
Views
10
CrossRef citations to date
0
Altmetric
Extra-Ocular and Sclera

Tensile Viscoelastic Properties of the Sclera after Glycosaminoglycan Depletion

&
Pages 1299-1308 | Received 18 Sep 2020, Accepted 21 Dec 2020, Published online: 30 Jul 2021
 

ABSTRACT

Purpose

Fibrillar collagen network and glycosaminoglycans (GAGs) are the primary components of extracellular matrix (ECM) of the sclera. The main goal of this study was to investigate the possible structural roles of GAGs in the scleral tensile properties as a function of preconditioning and displacement rate.

Methods

Four-step uniaxial stress-relaxation tests were used for characterizing the viscoelastic tensile response of the posterior porcine sclera with and without enzymatic GAG removal. The scleral strips were divided into different groups based on the displacement rate and the presence or absence of a preconditioning step in the loading protocol. The groups were (1) displacement rate of 0.2 mm/min without preconditioning, (2) displacement rate of 1 mm/min without preconditioning, (3) displacement rate of 0.2 mm/min with preconditioning, and (4) displacement rate of 1 mm/min with preconditioning. The peak stress, equilibrium stress, and the equilibrium elastic modulus were calculated for all specimens and compared against each other.

Results

Increasing the displacement rate from 0.2 mm/min to 1.0 mm/min was found to cause an insignificant change in the equilibrium stress and equilibrium elastic modulus of porcine scleral strips. Removal of GAGs resulted in an overall stiffer tensile behavior independent of the displacement rate in samples that were not preconditioned (P < .05). The behavior of preconditioned samples with and without GAG removal was not significantly different from each other.

Conclusions

The experimental measurements of the present study showed that GAGs play an important role in the mechanical properties of the posterior porcine sclera. Furthermore, using a preconditioning step in the uniaxial testing protocol resulted in not being able to identify any significant difference in the tensile behavior of GAG depleted and normal scleral strips.

Acknowledgments

The authors would like to acknowledge the support in part by National Science Foundation: Grant No. 1636659 and the National Institutes of Health [R21EY030264].

Disclosure statement

None.

Additional information

Funding

This work was supported by National Science Foundation the Division of Civil, Mechanical and Manufacturing Innovation [1636659] and the National Institutes of Health [R21EY030264].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.