145
Views
1
CrossRef citations to date
0
Altmetric
Retina and Choroid

Down-Regulation of circCOL1A2 Suppresses the Dysfunction of Diabetes-Related Retinal Microvascular Endothelial Cells via miR-646/FGF7 Axis

, , &
Pages 1525-1533 | Received 16 Jan 2022, Accepted 01 Aug 2022, Published online: 22 Aug 2022
 

Abstract

Purpose

Diabetic retinopathy (DR), the major complication of diabetes, is the leading cause of vision loss and blindness globally. Altered circular RNAs (circRNAs) expression has been found to be involved in DR process. Hence, this work aimed to explore the role and mechanism of circCOL1A2 in DR.

Methods

Human retinal microvascular endothelial cells (RMECs) treated with high glucose (HG) were used for functional analysis. Levels of genes and proteins were detected using quantitative real-time polymerase chain reaction and western blotting. In vitro experiments were conducted by transwell, tube formation, CCK-8 assays and ELISA, respectively. The binding interaction between miR-646 and circCOL1A2 or FGF7 (Fibroblast Growth Factor 7) was confirmed using dual-luciferase reporter and RNA immunoprecipitation assays.

Results

CircCOL1A2 was highly expressed in retinal tissues of DR patients and HG-induced RMECs. Then RMECs were exposed to HG treatment to mimic the diabetic conditions in vitro. Functionally, circCOL1A2 knockdown attenuated HG-evoked RMEC migration, proliferation, angiogenesis, blood-retina barrier (BRB) injury and inflammation. Mechanistically, circCOL1A2 functioned as a sponge for miR-646, and miR-646 directly targeted FGF7. Further rescue experiments showed that miR-646 inhibition abated the protective effects of circCOL1A2 knockdown on RMEC function under HG treatment. Besides that, miR-646 was decreased in HG-induced RMECs, re-expression of miR-646 reversed HG-evoked RMEC dysfunction, which was rescued by FGF7 overexpression.

Conclusion

CircCOL1A2 silencing can suppress HG-induced migration, proliferation, angiogenesis, BRB injury and inflammation in RMECs through miR-646/FGF7 axis, suggesting the potential involvement of circCOL1A2 in DR process.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.