279
Views
3
CrossRef citations to date
0
Altmetric
Retina

MEK/ERK/RUNX2 Pathway-Mediated IL-11 Autocrine Promotes the Activation of Müller Glial Cells during Diabetic Retinopathy

, , , , , , , & show all
Pages 1622-1630 | Received 04 Mar 2022, Accepted 22 Sep 2022, Published online: 10 Oct 2022
 

Abstract

Purpose

To uncover the role of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/runt-related transcription factor 2 (RUNX2)/interleukin-11 (IL-11) pathway in the activation of Müller glial cells (MGCs) and the breakdown of blood-retina barrier (BRB) during diabetic retinopathy (DR).

Methods

Western blot (WB) detected the activation of MEK/ERK/RUNX2/IL-11 pathway, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) detected IL-11 mRNA levels in high glucose (HG)-exposed MIO-M1 cells. Co-immunoprecipitation (Co-IP) identified the interaction between ERK and RUNX2. Immunofluorescence (IF) measured the co-localization of ERK and RUNX2. Luciferase reporter gene assay identified the transcription activity of IL-11 promoter under HG conditions. Enzyme-linked immunosorbent assay (ELISA) detected IL-11 levels in MIO-M1 cell culture supernatant. WB detected IL-RA protein levels, and Immunofluorescence measured the co-localization of IL-11 and IL-11RA. WB detected MGCs activation marker glial fibrillary acidic protein (GFAP) protein levels. 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay detected the proliferation of MGCs. WB detected the activation of MEK/ERK/RUNX2/IL-11 pathway in streptozotocin (STZ)-induced diabetic mice. ELISA detected IL-11 and IL-11RA levels in mouse retina tissues. QRT-PCR and WB detected tight junction-associated molecules claudin-5, occluding and tight junction protein 1 (ZO-1) mRNA and protein levels in mouse retina tissues, respectively.

Results

MEK/ERK/RUNX2/IL-11 pathway was activated in HG-exposed MIO-M1 cells. Additionally, IL-11 bound to IL-11RA on MIO-M1 cells to promote MIO-M1 cell activation and proliferation. In the mouse STZ-induced diabetic model, MEK/ERK/RUNX2/IL-11/IL-11RA pathway was also activated. Finally, the blockade of the pathway mitigated the activation of MGCs and the breakdown of BRB.

Conclusion

The data suggested that activated MEK/ERK/RUNX2/IL-11/IL-11RA autocrine pathway can promote the activation of MGCs and the breakdown of BRB during DR, implying novel anti-molecular strategies for the treatment of DR.

Acknowledgments

The authors thank for UCL Institute of Ophthalmology and Pro. Danning Hu (Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA) for letting us use the MIO-M1 cells.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

Additional information

Funding

The study was partly financially supported by the Jiangsu Provincial Natural Science Foundation (No. BK20191177) and the Suzhou Science and Technology Bureau (No. SYSD2020072 & No. SYS2018005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.