113
Views
0
CrossRef citations to date
0
Altmetric
Cornea

EZH2 Promotes Corneal Endothelial Cell Apoptosis by Mediating H3K27me3 and Inhibiting HO-1 Transcription

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1122-1132 | Received 14 Feb 2023, Accepted 06 Sep 2023, Published online: 06 Oct 2023
 

Abstract

Purpose

This paper aims to explore the molecular mechanism of Enhancer of Zeste Homolog 2 (EZH2)-mediated H3K27me3 in human corneal endothelial cells (HCEC) apoptosis by inhibiting Heme oxygenase-1 (HO-1) transcription to provide a potential target for the treatment of corneal apoptosis.

Methods

HCECs were cultured in vitro and transfected with si-EZH2, pcDNA3.1-EZH2, pcDNA3.1-HO-1, GSK-J4 (an effective H3K27me3 demethylase inhibitor), and corresponding controls. Western Blot assay was used to detect the levels of EZH2, HO-1, H3K27me3, and apoptosis-related proteins (Bcl-2, Bax, and Cleaved-caspase-3) in HCECs; CCK-8 assay was conducted to detect cell viability and flow cytometry to analyze the apoptosis. HO-1 mRNA levels were detected by RT-qPCR and changes in H3K27me3 levels on the HO-1 promoter were detected by chromatin immunoprecipitation.

Results

HCECs transfected with si-EZH2 showed significantly lower EZH2 mRNA and protein levels, higher HCEC viability, lower apoptosis rates, higher antiapoptotic protein Bcl-2 expression, lower proapoptotic protein (Bax and Cleaved-caspase-3) levels, and significantly higher HO-1 expression. HCECs transfected with pcDNA3.1-EZH2 showed the opposite results. EZH2 repressed HO-1 transcription by mediating H3K27me3. H3K27me27 was enriched in the HO-1 promoter and overexpression of EZH2 increased H3K27me27 levels. Promotion of H3K27me3 partially reversed the mitigating effect of si-EZH2 on HCEC apoptosis. Overexpression of HO-1 partially reversed the apoptosis-promoting effects of EZH2 and H3K27me3 on HCECs.

Conclusions

EZH2 promotes HCE cell apoptosis by mediating H3K27me3 to inhibit HO-1 transcription.

Graphical Abstract

Ethics approval

Ethical approval is not required for this study in accordance with local or national guidelines.

Disclosure statement

The authors declare that they have no competing interests.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Funding

This work was partially supported by A prospective Real-World Research on the efficacy of low intensity single wavelength red light in controlling myopia in adolescents (Grant Number: 2022CAC0228).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.