141
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Electrostatic Effects on Dispersion, Transport, and Deposition of Fine Pharmaceutical Powders: Development of an Experimental Method for Quantitative Analysis

, , , , , , & show all
Pages 59-79 | Published online: 19 Jan 2011
 

Abstract

Currently, there is no standard method for testing the electrostatic properties of pharmaceutical powders. The objective of this study was to develop a method of characterizing the dispersion, charging, and transport properties of fine powder flowing through tubes of different materials. Powders of known composition and size distribution were dispersed pneumatically and transported through a short section of tubing containing spiral baffle inserts of the same material to simulate powder flow in long sections of horizontal and vertical tubes with bends. The test powder was dispersed using ring jet suction and passed through the baffled tube to a sampling chamber, from which the powder cloud was sampled for particle size and electrostatic charge distribution measurement using an Electrical Single Particle Aerodynamic Relaxation Time (E-SPART) analyzer. Experimental data on the tribocharging and transport properties of different powders are presented along with an explanation of the charging mechanisms. Analyses of particle size and electrostatic charge distributions in real time and on a single particle basis using the E-SPART analyzer coupled with surface structure analyses with XPS and UPS showed that: (1) most powders are charged bipolarly with relatively high charge-to-mass ratio (Q/M) values that would have a strong effect on transport and deposition of powders; and (2) surface structures, particularly adsorbates, influence the work function and tribocharging of powder. Different methods, including plasma treatment, with minimal changes or contamination of the bulk properties of the powders are also suggested. pharmaceutical powders tribocharging dispersion work function charge distributions charge decay plasma treatment

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.