81
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A Numerical Simulation of Swirling Flow Pneumatic Conveying in a Vertical Pipeline

&
Pages 355-368 | Published online: 07 Jan 2010
 

Abstract

A numerical prediction for the axial and swirling pneumatic conveying in a vertical pipe was performed based on an Eulerian approach for the gas and a stochastic Lagrangian approach for the particles, where κ – ∊ turbulence model, the model of particle-particle and particle-wall collisions, was adopted. The numerical results are presented for polyethylene pellets of 3.2mm diameter conveyed through a pipeline of 12m in height with an inner diameter of 80mm. The initial swirl number was 0.0 and 0.68, the mean gas velocity varied from 11 to 17m/s, and the solid mass flow rate was 0.03 and 0.084 kg/s. From the numerical analysis, the swirl decay of the swirling gas-solid flow was found to be rapid in the acceleration region and approached the clean swirling flow in a fully developed region. The turbulent kinetic energy and energy dissipation rates of the swirling gas-solid flow increased near the wall and reduced in other regions. The comparison of predicted values with measured data showed a good agreement.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.