172
Views
7
CrossRef citations to date
0
Altmetric
Articles

Synthesis and application of Poly(acrylamide-itaconic Acid)/Zirconium tungstate composite material for cesium removal from different solutions

, &
 

ABSTRACT

This study is conducted to find the conditions required to synthesize composite material for cesium (134Cs+) removal from the generated liquid waste associated with nuclear, medical, industrial, and/or research activities. The study shows that the optimum conditions required for synthesizing “Poly [acrylamide (AM)-itaconic acid (IA)]/N,N′-methylenediacrylamide (DAM)/Zirconium tungstate (ZrW)” or “Poly(AM-IA)/DAM/ZrW” are 0.01 g DAM dose as a cross-linker, a co-monomer concentration of 20%, a co-monomer composition (AM-IA) (12:88), and 0.03 g (melted at 450 °C–500 °C) ZrW with gamma irradiation dose of 30 kGy. The composite material was characterized by Fourier infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET) surface area measurements. The adsorption performance of the composite was investigated. The maximum removal efficiency of 134Cs+ ions was found to be 93% in moderate alkaline solutions at pH 8 ± 0.2 after 90 min. Kinetic studies indicated that the adsorption process is controlled by the pseudo-second-order kinetic model as a chemisorption process. Fitting of the adsorption data has pointed out that the adsorption process follows the Freundlich isotherm model as heterogeneous process. The maximum adsorption capacity (qmax) is 5.298 mmol Cs+ g−1 adsorbent. Applicability of the synthesized composite material was also examined to remove 134Cs+ ions in different aqueous solutions.

Acknowledgment

The authors would like to express their deep thanks to Dr. Mohamed F. Attallah and Dr. J.A. Daoud (Hot Laboratory and Waste Management Center, EAEA, Cairo, Egypt) for their assistance and during preparation of the manuscript in its final version.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.