443
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical and tribological behaviour of tungsten carbide reinforced aluminum LM4 matrix composites

, , &
 

ABSTRACT

Aluminum-based metal matrix composites (AMCs) play a vital role for potential applications in aerospace and automotive industries. This paper explores the experimental analysis of a composite with aluminum LM4 alloy as the matrix and tungsten carbide (WC) as the reinforcement material. The composite specimens were fabricated by the stir casting process. The reinforced ratios of 5, 10 and 15 wt.% of WC particulates were stirred in molten aluminum LM4 alloy (AALM4). Once the composite is solidified, the specimens are prepared to the required ASTM dimensions and tested for various mechanical properties such as tensile strength, impact strength and hardness. Moreover, the tribological behavior of the composite was studied using the pin-on-disc wear test apparatus. X-ray diffraction (XRD) analysis was conducted to analyze the various elements present in the composites. Finally, the scanning electron microscope (SEM) analysis reveals the uniform distribution of WC particles in Aluminum LM4 alloy matrix. The improvement in mechanical properties – hardness, impact strength and tensile strength – was achieved for the increase in the addition of wt.% of WC particles in the LM4 matrix. The decrease in mass loss was observed for the composite containing 15 wt.% of WC during the wear test among the various composites tested.

Acknowledgments

The authors thank the Department of Manufacturing Engineering, CEG Campus, Anna University, Chennai and Department of Mechanical Engineering, PSG College of Technology, Coimbatore, for providing partial support for carrying out this research work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.