147
Views
2
CrossRef citations to date
0
Altmetric
Short Communication

A novel approach to prepare solvent-free cerium dioxide nanofluids

, , , , &
 

ABSTRACT

This paper develops a novel approach to prepare solvent-free cerium dioxide (CeO2) nanofluids through N,N-didecyl-N-methyl-N-(3-trimethoxysilylpropyl) ammonium chloride covalently grafted on the surface of CeO2 nanoparticles as core, and then poly(ethylene glycol) 4-nonylpheny 13-sulfopropyl ether sodium salt was grafted on the surface of CeO2 nanoparticles through ion exchange reaction. It is obviously observed that CeO2 nanofluids exhibited a solid state at room temperature, whereas they behave as liquid-like when being heated to above 45°C. To detect the properties of CeO2 nanofluids, the morphology, thermal stability, dispersibility, and rheological behavior of CeO2 nanofluids are mainly investigated. It is found that CeO2 nanofluids can flow without solvent existence. Meantime, it shows good dispersion and stability in water and other organic solvents for weeks due to amphiphilic properties of the modifier molecules.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [Grant Number 51403165], Guidance Project of China Textile Industry Association [Grant Number 2015017], and Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province [Grant Number PLN2016-02].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.