465
Views
13
CrossRef citations to date
0
Altmetric
ARTICLE

Population Structure of Alligator Gar in a Gulf Coast River: Insights from Otolith Microchemistry and Genetic Analyses

, , , , , , & show all
Pages 337-348 | Received 20 May 2016, Accepted 02 Dec 2016, Published online: 27 Feb 2017
 

Abstract

Growing interest in the Alligator Gar Atractosteus spatula among anglers and fishery managers has inspired efforts to better manage populations. Successful management requires identifying population structure and understanding the distribution of stocks and associated differences in life history. This is particularly important in river systems along the coast of the Gulf of Mexico, where transitions from freshwater rivers to saltwater bays provide the potential for life history diversification. We used otolith microchemistry and genetics to assess population structure of Alligator Gars in the Guadalupe River–San Antonio Bay system, Texas. Lifetime Sr:Ca revealed three, distinct life histories that differed in prevalence across the system. River-resident fish (i.e., fish exclusive to freshwater) were present throughout the river but were most common in the uppermost river reach (74% of upper river fish). Transient fish that used both river and bay habitats were also found throughout the river but were most prevalent in the lowermost river reach (66% of lower river fish) and bay (91% of bay fish). Bay residents (i.e., fish exclusive to salt water) were detected but comprised only 9% of bay fish. Haplotype diversity based on mitochondrial DNA was lowest in the upper river, indicating limited gene flow compared with the lower river and bay. Similarly, nuclear DNA analyses indicated nonrandom mating between fish from the upper river, lower river, and bay. The differences in Alligator Gar movement and genetics along the river–bay continuum suggest the presence of a river resident stock that predominates the upper river, and a transient stock that predominates the lower river and bay. Therefore, a local-scale management approach, consistent with the spatial partitioning between stocks, would conserve life history and genetic diversity within the system and provide opportunities to meet the needs of a diverse angling constituency. Understanding how population dynamics differ between stocks is needed to develop appropriate fishery management objectives and corresponding regulations for Alligator Gar.

Received May 20, 2016; accepted December 2, 2016 Published online February 27, 2017

ACKNOWLEDGMENTS

We thank K. Kolodzeijcyk, S. Robertson, K. Bodine, P. Fleming, A. Stevens, H. Williams, G. Binion, J. Findeisen, V. McMahan, J. Hafernick, J. Pawlik, M. Kelley, T. Krenek, B. Foster, J. Helms, W. Bubley, and D. Topping for assistance with field collections. Constructive comments on earlier versions of this manuscript were provided by R. K. Betsill, K. A. Bodine, B. R. Kreiser, D. L. McDonald, and J. W. Schlechte. Funding for this project was provided through Federal Aid in Sport Fish Restoration Program Grant F-231-R to the Texas Parks and Wildlife Department, Inland Fisheries Division.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.