192
Views
9
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

Effect of flue gas recirculation on nitric oxide (NO) emissions during the coal grate-fired process

, , , , , , & show all
Pages 783-794 | Received 28 Feb 2017, Accepted 10 Apr 2017, Published online: 03 Jul 2017
 

ABSTRACT

Flue gas recirculation (FGR) is a low nitrogen oxide (NOX) combustion technology. The present study used standard gas to simulate the cycle gas (the main ingredients of which are oxygen (O2), nitrogen (N2), and carbon dioxide (CO2)). The coal grate-fired process was divided into three zones, namely (1) volatilization zone, (2) main combustion zone, and (3) char combustion and burn-out zone. The effects of FGR on coal combustion and NO emissions were investigated in these zones of a unit-boiler experimental system. An industrial test was then conducted on a chain boiler that previously used FGR. Data showed that if the cycle gas was directed into the furnace from the volatilization zone, the curve of the coal surface temperature moved backwards, the temperature peak increased, and coal ignition was delayed. When the FGR rate was 20%, NO emissions/g coal was 41.8% less than in the absence of FGR, in the overall combustion process except for the volatilization zone. An industrial test demonstrated that FGR decreased the NO emissions and incomplete-combustion loss of gas. NO and carbon monoxide (CO) emissions were reduced by 26.9 and 38%, respectively. These observations may prove to be beneficial in reducing ambient air pollution and saving energy.

Disclosure statement

We declared that we have no conflicts of interest to this work.

Additional information

Funding

This work was supported by the National Science and Technology Support Project [grant number 2014BAA07B03].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.