73
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A novel approach to extract and characterize vacuum-pressurized bamboo fibers using mechano-chemical techniques

, , &
 

Abstract

This current study aims to extract bamboo fibers from different species of bamboo using the mechanochemical method and investigate their properties. The bamboo species used in this study were Dendrocalamus, Bambusa balcoaa, Oliveri, Asamica, and Chimono. The vacuum-pressurized impregnation treatment process was employed for treating the bamboo. The mechanochemical method was chosen for extracting the bamboo fibers due to its simplicity and efficiency. The yield percentage of the bamboo fibers was determined. X-ray diffraction (XRD) analysis showed an increase in the crystallinity of the bamboo fibers with subsequent treatments in the presence of NaOH, as evidenced by two well-defined peaks at 2θ = 17.6° and 2θ = 22.7°. FTIR analysis revealed the presence of numerous hydroxyl groups in the bamboo fibers, indicated by the –OH expanding and contracting vibration at the band around 3311 cm−1. Thermal gravimetric analysis (TGA) was conducted to investigate the thermal stability of the bamboo fibers, and the results demonstrated that chimino bamboo fiber exhibited the highest level of thermal stability compared to other treated bamboo fibers. Scanning electron microscopy (SEM) was employed for morphological characterization, providing insights into the surface morphology of the bamboo fibers. Based on the findings, it can be inferred that bamboo fibers, particularly of the chimino type, have the potential to serve as a viable reinforcement in polymeric composites for lightweight applications in various industries, such as automotive, aerospace, and packaging.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.