924
Views
54
CrossRef citations to date
0
Altmetric
Original Articles

Size Distribution Change of Titania Nano-Particle Agglomerates Generated by Gas Phase Reaction, Agglomeration, and Sintering

Pages 929-947 | Published online: 30 Nov 2010
 

In the manufacturing of nanometer-sized material particlulates by aerosol gas-to-particle conversion processes, it is important to analyze how the gas-phase chemical reaction, nucleation, agglomeration, and sintering rates control the size distribution and morphology of particles. In this study, titania particles were produced experimentally by the thermal decomposition of titanium tetraisopropoxide (TTIP) and oxidation of titanium tetrachloride (TiCl 4 ) using a laminar flow aerosol reactor. The effect of reaction temperature on the size and morphology of the generated particles was investigated under various conditions. The size distributions of agglomerates were measured using a DMA/CNC system. The size distributions of primary particles were measured using TEM pictures of the agglomerates sampled by a thermophoretic aerosol sampler. In order to model the growth of both agglomerates and primary particles simultaneously, a two-dimensional discrete-sectional representation of the size distribution was employed, solving the aerosol general dynamic equation for chemical reaction, agglomeration, and sintering. Qualitative agreement between the experimentally observed results and the simulation are satisfactory for the large variations in reactor temperature explored.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.