299
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Bi-Modal Aerosol Mass Loading on the Pressure Drop for Gas Cleaning Industrial Filters

Pages 805-814 | Published online: 30 Nov 2010
 

The typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 w m) and the coarse mode. An experimental study of pressure drop across industrial gas cleaning filters has been conducted using a particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The measured specific resistances of HEPA filters at a given face velocity of 5 cm/s were 1.18 2 10 6 , 5.89 2 10 5 , 4.67 2 10 5 , 2.65 2 10 5 , and 1.18 2 10 5 s -1 for the mass ratio of fine to coarse particles of fine only, 50%:50%, 25%:75%, 10%:90%, and coarse particles only, respectively. The pressure drop across the loaded filter increased with increasing face velocity. The larger the mass ratio of fine to coarse particles and the higher the face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.