3,854
Views
88
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Different Dilution Methods for Measuring Diesel Particle Emissions

, , , &
Pages 12-23 | Received 01 Sep 2002, Accepted 01 Apr 2003, Published online: 17 Aug 2010
 

Abstract

Particle emissions from a turbo-charged diesel off-road engine were characterized with DMA + CNC and electron microscopy for comparison of different sampling and dilution systems. Four different sampling methods were used: (1) two ejector diluters, (2) partial flow and ejector diluter, (3) porous tube and ejector diluter, and (4) porous tube diluter. Number size distributions for partial flow and ejector dilution had modes at 25–30 nm and at 45–50 nm independent of the dilution ratio. The mode at 25–30 nm indicated nucleation during dilution in these experiments and was clearly most significant for the partial flow and ejector diluter setup. This was attributed to the temperature difference between exhaust gas, sample line, and partial flow diluter and cold dilution air. For other dilution systems the main mode was at 45 nm and indications of a mode at 15–20 nm were observed depending on the dilution ratio. Especially for the porous tube diluter, the main mechanism for particle growth was condensation on the surfaces of the existing particles. According to this study the best dilution system for obtaining a number size distribution without any significant nucleation effects was the porous tube dilution setup.

Acknowledgments

This study was funded by VTT Processes. Dr. Unto Tapper is acknowledged for his contribution for TEM and EDS analyses.

Notes

1 Residence time in the mixing chamber.

2 As specified by manufacturer.

3 Estimated by model calculations based on experimental temperature data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.