18,312
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of the Pressure Drop in Tangential Inlet Cyclone Separators

&
Pages 857-865 | Received 18 Mar 2005, Accepted 09 Aug 2005, Published online: 23 Feb 2007
 

This article introduces a new mathematical model that predicts the pressure drop in a tangential inlet cyclone. The model calculates the pressure drop from the frictional losses in the cyclone body, using a wall friction coefficient based on the surface roughness and Reynolds number. The entrance and exit losses are also included in the model by defining new geometrical parameters. The pressure drop coefficient is obtained as a function of cyclone dimensions and operating conditions. The model is validated by studying 12 different cyclones presented in the literature. Comparison of the model results with predictions and measurements published in the literature show that the new model predicts the experimental results quite well for a wide range of operating conditions covering a flow rate of 0.3–220 l/s and a temperature range of 293–1200°K, in different cyclones. The pressure drop coefficient is also examined in view of the outlet pipe diameter, friction coefficient, surface roughness, and Reynolds number.

Notes

*The elliptical inlet of Geometry 9 was approximated as a rectangle with the same area.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.