2,487
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Deposition and Filtration of Nanoparticles in the Composites of Nano- and Microsized Fibers

&
Pages 483-493 | Received 13 Aug 2007, Accepted 07 May 2008, Published online: 17 Jun 2008
 

Abstract

Filtration of aerosol particles using composites of nano- and microsized fibrous structures is a promising method of effective separation of nanoparticles from gases. The multiscale physical system describing the flow pattern and particles deposition in it requires other than a continuous approach for the process analysis. The lattice-Boltzmann method was used for the calculation of deposition efficiency on nanosized particles for the system consisting of two nano- and microsized fibers. The proposed method allows to calculate the deposition efficiency of nanoparticles on both fibers for a very wide range of Knudsen numbers in the case of each nanofiber considering molecular, slip, and continuous flow patterns. The nanofiber is a significant attractor for collecting particles as an element of multiscale fibers of the filtration composite. The results of particle deposition efficiency calculated for the microfiber, using proposed method, are similar to those obtained from the classical continuum approach (CitationFilippova and Hanel 1997; CitationPrzekop et al. 2003). The proposed model was extended to calculate the performance of bilayer filter structures consisting of a nanofibrous front layer and a microfibrous backing layer of the filter. Filtration efficiency, pressure drop and quality factors for uniform and non-uniform distributions of nanofibers in the front filter layer were calculated for a wide range of Knudsen and Peclet numbers.

ACKNOWLEDGMENTS

This work was supported by the Cummins Filtration Ltd, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.