783
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A Monte Carlo Model for Soil Particle Resuspension Including Saltation and Turbulent Fluctuations

&
Pages 161-173 | Received 18 Nov 2007, Accepted 08 Oct 2008, Published online: 14 Jan 2009
 

Abstract

This article describes a stochastic model for resuspension that combines both aerodynamic entrainment and momentum transfer from saltating particles. Two case studies are performed based on soil conditions for the topmost layer of soil in Los Angeles County, CA, and Allegheny County, PA. Wind friction velocity, u∗, and soil size distribution were found to be the most important factors in predicting mass and number flux. Under a broad range of wind conditions mass and number fluxes agree to within an order of magnitude with the empirical models of CitationMarticorena and Bergametti (1995) and CitationGinoux et al. (2001) at u∗ ≤ 0.4 m/s. For u∗ ≤ 0.60 m s−1 and u∗ ≥ 0.85 m s−1 aerodynamic forces and splash were the dominant resuspension mechanisms, respectively. Flux was sensitive to wind speed but was not proportional to u3. The mass and number distributions with height peaked at heights corresponding to the maximum concentration of saltating particles and the maximum concentration of suspended particles, respectively. Particles that are most likely to resuspend in the absence of saltation are < 10 μm or > 100 μm in diameter. The average particle diameter increases with height but is consistently less than the average particle diameter of the parent soil. Simulations reached steady state in approximately 0.01 seconds, and an alternative method of predicting the reduction in near-surface wind speed as a result of saltation is presented as a component of the model.

The authors acknowledge the helpful insights of Mitchell Small, Nadine Aubry, Peter Adams, Spyros Pandis, and Yunha Lee. The authors are also grateful for the invaluable discussions with others in the Center for Atmospheric Particle Studies. This work was funded by National Science Foundation Grant BES-9714162 and a National Science Foundation Graduate Student Fellowship.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.