1,512
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Simulation of Particle Dispersion in the Wake of a Circular Cylinder

, , , &
Pages 174-187 | Received 06 May 2008, Accepted 13 Oct 2008, Published online: 14 Jan 2009
 

Abstract

In this article, numerical simulation of the Navier-Stokes equations was performed for the large-scale structures of a two-dimensional temporally developing cylinder flow and the associated dispersion patterns of particles were simulated. The time-dependent Navier-Stokes equations were integrated in time using a mixed explicit-implicit operator splitting rules. The spatial discretization was processed using spectral-element method. Non-reflecting conditions were employed at the outflow boundary. Particles with different Stokes numbers were traced by the Lagrangian approach based on one-way coupling between the continuous and the dispersed phases.

The simulation results of the flow field agree well with experimental data. Due to the effects of the coherent structures, the particles demonstrate a more organized dispersion process in the space and a periodic dispersion characteristic in the time. Particle dispersion increases with the flow Reynolds number and so does for particle concentration, which is independent of particle size. However, for particles at different Stokes numbers, the dispersion patterns are different. The particles at smaller Stokes number congregate mainly in the vortex core regions and the particles at larger Stokes number disperse much less along the lateral direction with the even distribution. The higher density distribution at the outer boundary of large-scale vortex structure characterizes the dispersion pattern of particles at the Stokes numbers of order of unity. Furthermore, these particles disperse largely along the lateral direction and show the nonuniform distribution of concentration.

This project is supported by the China Postdoctoral National Science Foundation (2003033539) and the National Natural Science Foundation of China (50236030).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.