919
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Charge Distribution of Incipient Flame-Generated Particles

, &
Pages 651-662 | Received 02 Sep 2009, Accepted 21 Mar 2010, Published online: 14 Jul 2010
 

Abstract

We report the size and electrical charge distributions of incipient nanoparticles generated in atmospheric pressure hydrocarbon/air premixed flames in conditions prior to the onset of soot particles. The particle size and charge distributions are measured by Differential Mobility Analysis (DMA) and compared to theoretical charge distributions predicted for flame conditions. The results show that the charge distribution attained in flames is well predicted by Boltzmann theory for all particles, including even the smallest incipient particles with diameters in the 1–3 nm size range. In flame conditions that produce only particles smaller than 3 nm, the charge fraction of particles agrees with that predicted by Boltzmann theory near the flame temperature (1700 K). In flame conditions with ‘bimodal’ particle size distributions, the charge fraction of the smallest particles agrees with the Boltzmann prediction at maximum flame temperature, while the charge fractions of larger particles agree with Boltzmann theory at temperatures that coincide with the local temperature near the probe surface (1000–1200 K). The results of this paper show that the temperature of the Boltzmann charge fraction that best agrees with the measured charge fraction for each particle size gives the local temperature of their last coagulation event. The smaller particles, which retain their charge fraction predicted by Boltzmann at the maximum flame temperature, do not thermalize by coagulation in the cool region near the probe evidencing low probability for charge transfer as well as for coagulation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.