965
Views
20
CrossRef citations to date
0
Altmetric
Regular Articles

Extending the Capabilities of Single Particle Mass Spectrometry: II. Measurements of Aerosol Particle Density without DMA

, , &
Pages 125-135 | Received 01 May 2010, Accepted 11 Sep 2010, Published online: 09 Jun 2011
 

Abstract

Particle density is an important and useful property that is difficult to measure because it usually requires two separate instruments to measure two particle attributes. As density measurements are often performed on size-classified particles, they are hampered by low particle numbers, and hence poor temporal resolution. We present here a new method for measuring particle densities using our single particle mass spectrometer, SPLAT. This method takes advantage of the fact that the detection efficiency in our single particle mass spectrometer drops off very rapidly as the particle size decreases below 100 nm creating a distinct sharp feature on the small particle side of the vacuum aerodynamic size distribution. Thus, the two quantities needed to determine particle density, the particle diameter and vacuum aerodynamic diameter, are known. We first test this method on particles of known compositions and densities to find that the densities it yields are accurate. We then apply the method to obtain the densities of particles that were characterized during instrument field deployments. We illustrate how the method can also be used to measure the density of chemically resolved particles. In addition, we present a new method to characterize the instrument detection efficiency as a function of particle size that relies on measuring the mobility and vacuum aerodynamic size distributions of polydisperse spherical particles of known density. We show that a new aerodynamic lens used in SPLAT II improves instrument performance, making it possible to detect 83 nm particles with 50% efficiency.

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Office of Biological and Environmental Research (OBER). Part of this research was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's OBER at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the U.S. DOE by Battelle Memorial Institute under contract No. DE-AC06-76RL0 1830.

We thank the ISDAC and CARES teams for their incredible help during these field campaigns. ISDAC and CARES were supported by the U.S. DOE Atmospheric Radiation Measurement (ARM) Program Climate Research Facility, the DOE Atmospheric Sciences Program, the National Research Council of Canada and Environment Canada. Some of the data were obtained from the ARM program archive, sponsored by DOE OBER Environmental Science Division.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.