4,202
Views
236
CrossRef citations to date
0
Altmetric
Regular Articles

Particle Size Magnifier for Nano-CN Detection

, , , , , , & show all
Pages 533-542 | Received 23 Jun 2010, Accepted 01 Nov 2010, Published online: 18 Jan 2011
 

Abstract

A new particle size magnifier (PSM) for detection of nano-CN as small as ∼1 nm in mobility diameter was developed, calibrated and tested in atmospheric measurements. The working principle of a PSM is to mix turbulently cooled sample flow with heated clean air flow saturated by the working fluid. This provides a high saturation ratio for the working fluid and activates the seed particles and grows them by condensation of the working fluid. In order to reach high saturation ratios, and thus to activate nano-CN without homogeneous nucleation, diethylene glycol was chosen as the working fluid. The PSM was able to grow nano-CN to mean diameter of 90 nm, after which an ordinary condensation particle counter was used to count the grown particles (TSI 3010). The stability of the PSM was found to be good making it suitable for stand-alone field measurements. Calibration results show that the detection efficiency of the prototype PSM + TSI 3010 for charged tetra-alkyl ammonium salt molecules having mobility equivalent diameters of 1.05, 1.47, 1.78, and 2.57 nm are 25, 32, 46, and 70%, respectively. The commercial version of the PSM (Airmodus A09) performed even better in the smallest sizes the detection efficiency being 51% for 1.47 nm and 67% for 1.78 nm.

Acknowledgments

This work was partially funded by European Commission 6th Framework programme 13 project EUCAARI, contract no 036833–2 (EUCAARI). Financial support from Kone foundation, Väisälä foundation, Otto Malm foundation, The Academy of Finland and European Research Council is acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.