2,628
Views
82
CrossRef citations to date
0
Altmetric
Original Articles

Volatility Characterization of Cooking-Generated Aerosol Particles

, , &
Pages 1069-1077 | Received 15 Jun 2010, Accepted 05 Aug 2010, Published online: 10 May 2011
 

Abstract

Cooking-generated aerosol characterization is crucial for providing an accurate evaluation of human exposure to particle concentrations. In addition, when evaluating the dimensional properties of aerosols emitted from cooking activities, one key aspect to be investigated is the composition of the particles emitted. To this end, an evaluation of the volatility of cooking-generated aerosol particles was performed in this study. Total concentration and size distribution measurements were carried out using a thermal conditioning device, along with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), in order to evaluate the amount of volatile material emitted by different cooking activities (frying and grilling), as well as those involving different kinds of food (fatty and vegetable foods). The results showed a shift in the dominant size distribution mode toward smaller diameters with higher aerosol conditioning temperatures. The corresponding total number concentrations were roughly constant when fatty foods were cooked, but a significant reduction in total particle concentration was observed when vegetable foods were fried or grilled. These results seem to demonstrate the presence of a nonvolatile core when cooking fatty foods. The larger volatile fraction associated with vegetable food cooking is also demonstrated by comparing the nonvolatile surface area and volatile mass distributions for each cooking activity, in order to evaluate the particle's chemical and physical effects on human being.

This article is part of the following collections:
Indoor Environments and Aerosols

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.