1,245
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of Aerosol Penetration Through Individual Protective Equipment in Elevated Wind Conditions

, , &
Pages 705-713 | Received 07 Jan 2013, Accepted 17 Feb 2013, Published online: 01 Apr 2013
 

Abstract

A methodology to characterize particle penetration characteristics of individual protective equipment (IPE) under elevated wind conditions was developed. Performance of a complete IPE system can be determined from the knowledge of the performance characteristics of the IPE subsystems, or components. Here, particle penetration characteristics of a cylindrical-shaped component, consisting of an outer fabric sleeve enclosing an inner appendage, were studied as a function of particle size and ambient wind conditions. A component particle penetration model was developed by combining a potential flow model to calculate flow through and around a component with a filtration model. The filtration model combines classical filtration theory with simple bench-top experiments to determine net particle penetration. The component model predictions of particle penetration through a cylindrical component suggest that its filtration performance is strongly dependent on particle size and ambient wind velocities. To test model predictions, wind-tunnel experiments were conducted over an ambient wind velocity range of 10–80 mph (5–40 m s−1) and particle diameter range of 10 nm to 2 μm. The experimental results validated model predictions of particle penetration through a cylindrical component. The component model can be extended to model the integrated IPE system considering it to be composed of a combination of cylindrical components.

Copyright 2013 American Association for Aerosol Research

The authors kindly acknowledge funding from the Defense Threat Reduction Agency (DTRA; Agreement # SEA 139).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.