2,928
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Experimental Study on Filtration Performance of Flat Sheet Multiple-Layer Depth Filter Media for Intake Air Filtration

, &
Pages 1334-1341 | Received 07 Feb 2013, Accepted 06 Aug 2013, Published online: 28 Apr 2014
 

Abstract

Depth filter media are usually composed of multiple layers to attain optimal values of main filtration parameters such as pressure drop and particle collection efficiency (PCE). Understanding the performance of the single layers that make up the filter media can contribute to attaining these optimum values. For the purpose of this study, we have developed two samples of depth filter media, 2LM and 3LM, composed of two and three layers, respectively. Samples of the media and single layers have been prepared in flat sheet form. Filtration performance of these samples has been evaluated using a lab-scale flat sheet filter media test unit with KCl as the test aerosol. Results from these tests have been compared with those from an automated filter tester (AFT) with NaCl as the test aerosol. These media have been characterized based on filter media properties and data from the filtration performance tests and the effect of layers on filtration performance has been observed. Pressure drop data from the tests with a standard test unit and our laboratory test unit are similar, and the difference in data is attributed to high inlet concentration of KCl particles. The overall filtration performance is strongly dependent on the final layer regarding pressure drop and particle of two- and three-layer filter media. Other constituent layers can be seen as contributors to the dust-holding capacity of the filter media and can reduce the dust load for the final layer.

Copyright 2013 American Association for Aerosol Research

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.