1,069
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Simulating and Modeling Particulate Removal Processes by Elliptical Fibers

, , &
Pages 207-218 | Received 15 May 2013, Accepted 28 Oct 2013, Published online: 26 Dec 2013
 

Abstract

A lattice Boltzmann-cellular automata (LB-CA) probabilistic model for two-phase flows was used to simulate the particle capture process of elliptical fiber. The pressure drop and capture efficiency due to various capture mechanisms (Brownian diffusion, interception, and inertial impaction) were investigated. It is found that the diffusional capture efficiency of the elliptical fiber is greater than that of the circular fiber because of its larger capture area, which is proportional to the aspect ratio. When the interception or inertial impaction is dominated, aspect ratio, orientation angle, and the ratio of particle diameter to the fiber diameter affect the capture efficiency of the elliptical fiber, which is usually higher than that of the circular fiber except that the major axis is parallel to the incoming flow. The correction factors for the pressure drop and capture efficiency of elliptical fiber from those of circular fiber were attained through the Levenberg–Marquardt algorithm, which is used to fit some well-organized LB-CA simulations. These empirical correction factors can combine the classical models for circular fiber to calculate the pressure drop and capture efficiency for elliptical fiber in a simple way. Finally, the quality factors of elliptical fibers as a function of the aspect ratio and orientation angle were investigated, which is conducive to optimization configuration of elliptical fiber in different operation conditions.

Copyright 2014 American Association for Aerosol Research

FUNDING

This study was financially supported by the National Natural Science Foundation of China (51276077, 51390494), Program for New Century Excellent Talents in University (NCET-10–0395), and National Key Basic Research and Development Program (2010CB227004 and 2013CB228504).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.