1,426
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Agglomeration Processes and Mechanisms of CO2 Snow Inside a Tube

, &
Pages 228-237 | Received 27 Aug 2013, Accepted 16 Oct 2013, Published online: 26 Dec 2013
 

Abstract

This article experimentally investigates the agglomeration mechanism of CO2 primary particles inside a tube. The results show that a complicated particle motion in the upper portion of the tube is responsible for the formation of large snow particles. The high speed and complicated motion of the snow particles inside the tube provide both the opportunities and time for the collision of particles, which implies that only particle deposition and re-entrainment cannot completely describe the phenomenon of particle agglomeration. The results also show the mechanisms of particle agglomeration inside a tube, which include primary particle agglomerate in jet vortexes, agglomerated particles flowing upward into the recirculation region, particle clusters growing in the recirculation flow, and finally particles being released with the jet flow. A minimum tube length (30 mm in this case) is needed to ensure the complete formation of the agglomeration mechanisms with recirculation flow, and thus the formation of considerable amounts of agglomerated particles. The results of this study thus improve current understanding of the agglomeration process and mechanisms of CO2 snow formation inside a tube.

Copyright 2014 American Association for Aerosol Research

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.