1,000
Views
12
CrossRef citations to date
0
Altmetric
Articles

Deposition method, relative humidity, and surface property effects of bacterial spore reaerosolization via pulsed air jet

, , , , &
Pages 1027-1034 | Received 26 Dec 2016, Accepted 29 Apr 2017, Published online: 13 Jun 2017
 

ABSTRACT

Biological warfare incidents generate both immediate and delayed hazards, potentially resulting from reaerosolization of deposited hazardous particles from surfaces. Understanding the causes and effects of the initial deposition method and environmental conditions on reaerosolization is important in hazard prediction and selection of mitigation approaches. This study was conducted to determine the amount of reaerosolization of various bacterial spores and 1 µm polystyrene latex microspheres deposited wet or dry and incubated at 20 or 80% relative humidity (RH). The organisms used in this study were Bacillus atrophaeus var. globigii (Bg), B. thuringiensis (Bt), B. anthracis ΔSterne (Ba-ΔSterne), Ba-ΔSterne ΔbclA mutant (BclA), and Ba-ΔSterne ΔcotE mutant (CotE). These organisms represent a range of spore types with different outer surfaces: spores with exosporium hairs and a basal layer (Ba-ΔSterne and Bt), spores with a basal layer (BclA), and spores with a spore coat only (no exosporium, Bg and CotE). A pulsed air impinging jet was used to reaerosolize particles from gridded glass surfaces. The amount of reaerosolization was determined by counting the number of particles on the gridded surface before and after applying the air jet. Results indicate that, in general, higher reaerosolization was observed when particles were deposited dry and incubated at lower RH conditions. Our results indicate that Bt (has exosporium) was reaerosolized more readily than Bg (no exosporium) in all cases studied. This method can be used in laboratory studies to compare bacterial spore behavior and to study the relative effects of different spore outer layers and surface types on reaerosolization.

© 2017 Leidos, Inc.

Funding

This research was funded by the Edgewood Chemical Biological Center, Surface Science Initiative.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.