674
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Soot differentiation by laser derivatization

ORCID Icon, , &
Pages 207-229 | Received 01 Sep 2018, Accepted 23 Nov 2018, Published online: 27 Dec 2018
 

Abstract

Combustion produced soot is highly variable in its composition and nanostructure, both of which are dependent upon combustion conditions. Quantification of high-resolution transmission electron microscopy (HRTEM) images for nanostructure parameters shows that soot nanostructure is dependent upon its source. In principle, this permits identification of the soot and its contribution to any pollution monitoring receptor site. Many structural and chemical aspects are subtle, unaccounted for in direct nanostructure quantification. The process of pulsed laser annealing is demonstrated to enhance slight differences in nanostructure and chemical composition. Chemistry-based limitations imposed due to nanosecond heating and microsecond cooling timescales highlight these initial compositional and structural differences—as dependent upon source-specific formation conditions. This study demonstrates laser-based heating as an analytical tool for soot differentiation by formation conditions/source by identifying operational parameters for optimal derivatization. Nanostructure changes are qualitatively shown using HRTEM and quantified using image-based fringe analysis for real and model soots.

Copyright © 2019 American Association for Aerosol Research

Acknowledgments

HRTEM was performed using the facilities of the Materials Research Institute at The Pennsylvania State University.

Additional information

Funding

The authors acknowledge support by the National Science Foundation (NSF), Chemical, Bioengineering, Environmental, and Transport Systems (CBET), under Grant Number 1236757, and Division of Chemical, Bioengineering, Environmental, and Transport Systems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.