270
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of ventilation rate and social distancing on risk of transmission of disease: a numerical study using Eulerian-Lagrangian method

ORCID Icon, , &
Pages 70-90 | Received 07 Jul 2023, Accepted 08 Oct 2023, Published online: 07 Nov 2023
 

Abstract

This study utilized the Eulerian-Lagrangian method to investigate the risk of transmission of disease by tracking particles generated through coughing. The effects of ventilation rates (0.5, 5.0, and 10 ACH) and social distancing (0.9 and 1.8 m) were examined in a small office room using a displacement ventilation system. Numerical simulations considered different particle sizes (1, 5, 10, 20, 40, and 80 μm) to understand particle behavior and transmission routes. The airflow resulting from human coughing was validated with experimental data. Results showed that at a social distance of 0.9 m, increasing the ventilation rate led to a higher fraction of particles directly inhaled by susceptible individuals, potentially causing droplet and airborne transmission. However, maintaining a social distance of 1.8 m and a ventilation rate of 10 ACH significantly reduced the fraction of inhaled particles. Larger particles tended to deposit on floors and surfaces, while smaller particles remained suspended in the air. Higher ventilation rates increased particle deposition on the body surface of susceptible individuals, whereas increasing social distance reduced particle deposition. These findings highlight the importance of appropriate ventilation rates and social distancing in reducing the risk of infection transmission. Maintaining a social distance of 1.8 m combined with increased ventilation effectively reduced the fraction of inhaled particles. Larger particles were more likely to deposit on surfaces, emphasizing the need for regular disinfection. Understanding the dynamics of infectious particles and implementing effective ventilation and distancing measures can help mitigate the spread of infectious diseases in indoor environments.

Copyright © 2023 American Association for Aerosol Research

Editor:

Acknowledgements

This research was supported by JSPS KAKEHI (Grant Number 21K18763).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.