579
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

On the Combination Coefficient of Positive Ions with Ultrafine Neutral Particles in the Transition and Free-Molecule Regimes

&
Pages 134-147 | Received 08 Oct 1991, Accepted 19 Feb 1992, Published online: 11 Jun 2007
 

Abstract

The charged fraction of ultrafine silver particles (5–50 nm) suspended in high-purity helium (99.998% grade) was measured as a function of particle size under different charging conditions (i.e., ion concentration and charging time). The charger used is a modified version of the one described in a previous study (Romay et al., 1991). Two radioactive sources of 250 μCi Po-210 are located in a cavity at the charger inlet. The cavity configuration is designed to control the range of the α rays. The modified charger provides a uniform electric field in the axial direction to separate the positive ions from the negative ions and electrons produced by the ionizing radiation. Thus, the aerosol particles are first exposed to a small region of electrons and positive ions, and are subsequently charged by positive ions in a much longer section of the charger. The ion concentration is estimated from the ion current collected in the exit electrode and measured with a picoammeter. The charging time is estimated from the length of the unipolar section of the charger and from the flow velocity profile in the charger. Experiments were performed to measure the fraction of uncharged particles by using a condensation particle counter equipped with a multichannel analyzer. From the measured uncharged fraction, ion concentration and charging time, the combination coefficient between positive ions and neutral particles was determined. The Knudsen number of the experimental data ranged from 2.4 to 24. The results were compared with the combination coefficient calculated using several available theories. It is concluded that Fuchs' limiting-sphere theory (1963), using ion properties of He2 +, gives the best agreement with the experimental results.

This is Particle Technology Laboratory Publicati No. 807.

Notes

This is Particle Technology Laboratory Publicati No. 807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.