3,149
Views
390
CrossRef citations to date
0
Altmetric
Original Articles

Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions

, , &
Pages 293-313 | Received 03 May 1994, Published online: 12 Jun 2007
 

Abstract

A particle beam is produced when a particle-laden gas expands through a nozzle into a vacuum. This work discusses the theoretical basis of a novel method for producing highly collimated and tightly focused particle beams. The approach is to pass the particle-laden gas through a series of axisymmetric contractions and enlargements (so-called aerodynamic lenses) before the nozzle expansion. Particles are moved closer to the axis by a lens if the particle sizes are less than a critical value and particles can be confined very closely to the axis by using multiple lenses in series. Since particles close to the axis experience small radial drag forces, they stay close to the axis during nozzle expansion and therefore form a narrow particle beam downstream. The major effects that limit the minimum beam width are Brownian motion and lift forces on particles during the nozzle expansion. Simple theoretical models are developed in this work to estimate the minimum particle beam width set by these effects. While the Brownian-motion effects occur for all types of particles, the lift-force effects only occur for nonspherical particles but are often much greater than the Brownian-motion effects.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.