196
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Stochastic Modeling of a New Spectrometer

, , &
Pages 611-627 | Received 11 Jul 1994, Published online: 13 Jun 2007
 

Abstract

A new spectrometer for classifying aerosol particles according to specific masses is being considered (Ehara et al. 1995). The spectrometer consists of concentric cylinders which rotate. The instrument is designed so that an electric field is established between the cylinders. Thus, aerosol particles injected into the spectrometer are subjected to a centrifugal force and an electric force. Depending on the balance between these two forces, as well as Brownian motion, charged particles either pass through the space between the cylinders or stick to either cylinder wall. Particles which pass through are detected. Given the rotation rate, voltage drop and physical dimensions of the device, we calculate the probability of detection in terms of particle density, diameter and charge. This is the transfer function. In this work, the focus is on situations where Brownian motion is significant. To solve for the transfer function, the trajectory of a particle in the spectrometer is modeled with a stochastic differential equation. Laminar flow is assumed. Further, attention is restricted to spherical particles with uniform density. The equation is solved using both numerical and Monte Carlo methods. The agreement between methods is excellent.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.