598
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Turbulent Deposition of Aerosol Particles in Large Transport Tubes

, &
Pages 107-116 | Received 21 Feb 1995, Published online: 13 Jun 2007
 

ABSTRACT

Particle deposition from turbulent flows in large tubes (up to 102 mm) was measured experimentally and a correlation developed for the results. The correlation allows prediction of the nondimensional deposition velocity as a function of the nondimensional relaxation time and the flow Reynolds number. The correlation shows good agreement with previous correlations for deposition in small diameter tubes as well for the full range of tube sizes (13–102 mm diameter) and Reynolds numbers (up to 55,000) upon which the correlation is based. As an example of the improvement in predictive abilities rendered by this new model, the penetration of 20-mm-aerodynamic-diameter aerosol particles in a 102-mm-diame-ter tube at a flow rate of 2260 L/min was measured to be 59%. The present model predicts a penetration of 62%, while two previously reported models that do not include Reynolds number effects predict 80% and 82% penetration. This new model should be of benefit in the design and evaluation of large-sized transport tubes for continuous monitoring applications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.