368
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A Two-Dimensional Discrete-Sectional Model for Metal Aerosol Dynamics in a Flame

, , &
Pages 185-196 | Received 09 May 1997, Accepted 01 Oct 1997, Published online: 13 Jun 2007
 

ABSTRACT

Aerosol nucleation and growth in a laminar flame or a gas-phase reaction jet were considered in the free-molecular regime. A two-dimensional, axisymmetric, discrete-sectional model was developed based on a species equation. Parabolic conservation equations resulted from the formulation of the governing equations in boundary layer form, neglecting axial diffusion and axial thermophoretic velocities. The source terms of the equations included monomer formation by gas-phase chemical reaction, and growth or reduction by coagulation and condensation among all aerosol particles. A binomial expansion was used to approximate the collision rate. The equations were linearized by Newton's method and solved with a block tridiagonal solver. The results of the model exhibited reasonable agreement with an aerosol size distribution measured by dynamic light scattering. Spatial transport processes that could influence the aerosol dynamics included convection, diffusion, and thermophoresis. Their impact on the development of the aerosol and its distribution in the flame was investigated; thermophoresis was found to have the greatest impact on the spatial distribution of aerosol mass, although the amount of aerosol was not affected significantly.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.