3,581
Views
92
CrossRef citations to date
0
Altmetric
Original Articles

Particle Charge Distribution Measurement for Commonly Generated Laboratory Aerosols

, &
Pages 489-501 | Received 31 Jan 1997, Accepted 30 Dec 1997, Published online: 13 Jun 2007
 

ABSTRACT

An improved particle charge analyzer system has been developed to measure the absolute charge distribution of common generated laboratory aerosols. The charge analyzer system consists of an integral cylindrical mobility analyzer used in conjunction with an optical aerosol spectrometer, with computer assisted operation and data reduction. The charge analyzer collects aerosol particles over an absolute electrical mobility range from 4.2*10−4 to 400 cm2/(stat · Volt second) and flow rates that can vary from 0.3 to 30 liters per minute. The charge analyzer has been used to investigate the nature of spray and contact electrification during aerosol generation by measuring the residual charge distribution on the liquid and solid generated particles. In addition, the neutralization of charged particles by bipolar ions also was studied using conventional neutralizers that use ionizing radiation from alpha and beta sources. Charge distribution measurements were performed on alumina dust (Al), Arizona road dust (ARD), potassium chloride (KCl), sodium chloride (NaCl) and di-octyl sebacate (DOS) liquid particles. Aerosol generation devices include a Collison atomizer, a condensation aerosol generator and a fluidized bed dust generator. Our work provides experimental charge distribution data for comparison with simple models of electrification theory. Experimental results showed that charge levels of atomized KCl and NaCl particles were high and decreased as the dissolved ion concentration increased. DOS particles generated by evaporation-condensation were both neutral and moderately charged. These conclusions support the existence of a dipole layer at the liquid-gas interface that interacts with dissolved particles and changes their charge state. Alumina and ARD generated by the fluidized bed disperser are highly charged due to strong contact electrification during dispersion. In most cases, the charge on generated aerosols could be reduced to Boltzmann charge equilibrium conditions by commonly used radioactive neutralizers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.