215
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

The Deposition of Unattached Radon Progeny in a Tracheobronchial Cast as Measured with Iodine Vapor

, &
Pages 502-510 | Received 02 Sep 1997, Accepted 14 Jan 1998, Published online: 13 Jun 2007
 

ABSTRACT

The deposition of the unattached radon progeny in hollow cast models of the human tracheobronchial region was studied using iodine vapor. The experiments were conducted in a replicate cast whose inner surface was coated with NaOH impregnated charcoal powder. This coating can trap iodine molecules by converting iodine into iodide and iodate, so that the iodine gas molecules behave like particles and stick to the surface upon contact. The iodine vapor is selected as a surrogate of radon progeny because the effective diffusion coefficient of iodine vapor, 0.08 cm2 s−1, is close to the diffusivities of unattached radon progeny (0.03–0.07 cm2 s−1). Deposition experiments have been conducted under constant and cyclic inspiratory flow between 5 and 30 LPM. It was found that the deposition of iodine vapor under constant flow can be described by diffusion in laminar flow. The cyclic inspiratory flow pattern does not significantly change the total deposition in the tracheobronchial cast. This observation, combined with the enhanced particle deposition due to charge (Cohen et al., 1996) suggest that particle charge plays an important role in the deposition of submicron particles in human airways.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.