1,947
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

A Model of Ventilation Distribution in the Human Lung

Pages 309-319 | Published online: 30 Nov 2010
 

A thorough analysis of aerosol particle deposition in the human lung requires the knowledge of the distribution of inspired air at respiration. In this paper, a mathematical model of ventilation distribution has been developed using a five-lobe airway model. The model accounts for the nonlinear effects of compliance and resistance on airway dynamics. Ventilation distributions were determined under different gravitational force conditions. A larger gravity leads to a greater nonuniformity of ventilation between the upper and lower lobes of the lung. Ventilation distributions in different lobes of the lung at various inspiratory flow rates were also calculated. At slow inspiratory flow rates, ventilation was found to be nonuniform with more air entering the lower lobes. As the flow rate increased, this nonuniformity became smaller. The calculated results compare favorably with existing experimental data. When a different gas was inspired instead of air, a preferential distribution of ventilation to the upper lobes was found if the density of the inspired gas was greater than that of the air.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.