45
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Amelogenin Self-Assembly and the Role of the Proline Located within the Carboxyl-Teleopeptide

, &
Pages 52-57 | Published online: 06 Aug 2009
 

Abstract

A hallmark of biological systems is a reliance on protein assemblies to perform complex functions. We have focused attention on mammalian enamel formation because it relies on a self-assembling protein complex to direct mineral habit. The principle protein of enamel is amelogenin that self-assembles to form nanospheres. In mice, the principal amelogenin product is a 180 amino acid hydrophobic protein. The yeast two-hybrid assay has been used to demonstrate the importance of amelogenin self-assembly domains. We have generated specific variants of amelogenin to analyze contributions of individual amino acids to the self-assembly process. These amelogenin variants have been produced either by deleting carboxyl-terminal amino acids (to generate proteins that relate to the documented proteolytic products of mouse amelogenin) or by a site-directed mutagenesis approach. Assessment of variant amelogenins truncated at the carboxyl-terminal imply that the proline at position 169 of mouse amelogenin (M180) plays a significant role in amelogenin self-assembly. Site-directed mutagenesis of this particular proline, however, failed to disrupt the amelogenin self-assembly property. These conflicting data add to the complexity of protein-protein assembly mechanisms as they relate to the enamel matrix. Available data suggest a robustness of this enamel protein (amelogenin) that ensures a functional, even though mechanically less than optimal, enamel results despite either minor or major genetic errors to the amelogenin gene locus.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.